L'iperossia limita la somministrazione di ossigeno nel paziente critico

Congresso Moremed 4-5 aprile 2017

Filippo Serra Sabrina Bedogni

Lower margin of pleura

- Definizioni
- Curva di dissociazione dell'Hb
- PO₂ cellulare
- Conseguenze fisiopatologiche
- Indicazioni Ossigenoterapia
- Effetti dell'iperossia
- Studi che dimostrano evidenze di outcome negativi
- Conclusione

VALORI FISIOLOGICI

 $PaO_{2} = 80-100 \text{ mmHg}$

VALORI CLINICI

Ipossia: PaO₂< 60 mmHg

Normossia: $PaO_2 = 60-100 \text{ mmHg}$

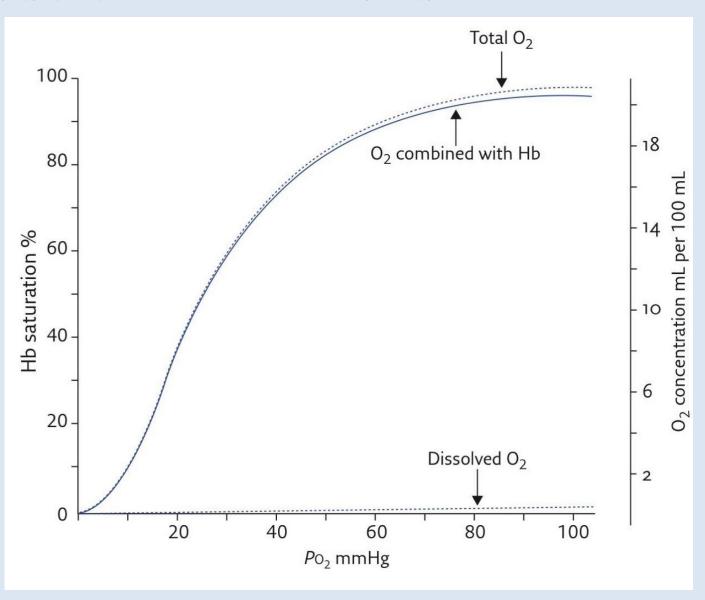
Iperossia: È necessaria una definizione condivisa

Negli studi è variabile tra:

PaO₂ > 120 mmHg e PaO₂ > 300mmHg

$DO_2 = CO \times CaO_2 \times 10$ $CaO_2 = ([Hb] \times 1,39 \times SaO_2) + (0,003 \times PaO_2)$

PaO₂ è un indice attendibile di ossigenazione solo se interpretato tenendo conto della curva


Per valori di SaO₂>90% la curva è relativamente piatta, quindi l'aumento di FIO₂ ha uno scarso contributo all' aumento di saturazione dell'Hb

Solo ad una pressione di 3 Atm (ossigenoterapia iperbarica), l'O₂ fisicamente disciolto nel sangue può soddisfare le richieste metaboliche dell'organismo

CURVA DI DISSOCIAZIONE DELL'Hb

Collins J-A, Rudenski A, Gibson J, et al.

Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve. Breathe 2015; 11: 194-201

PO₂ CELLULARE

Modello "cascata dell'ossigeno" gradiente atmosfera-mitocondrio

atmosfera (PO₂≈159 mmHg) → mitocondrio (PO₂ ≈1mmHg) →

scambio gas alveolari trasporto ematico di O₂ perfusione tissutale

Modello di "autonomia della cellula"

Rapporto ATP/ADP e [H⁺]_i
guidano la produzione di ATP
quindi la richiesta di O₂ della cellula

Ipotesi:

disponibilità di O₂ oltre il necessario nell'interstizio non ne modifica il trasporto intracellulare

CONSEGUENZE IPOSSIEMIA

- Aumentata estrazione cellulare di O₂
- Adattamenti ezimatici
- Arresto della fosforilazione ossidativa
- Shift al metabolismo anaerobio

GLICOLISI ANAEROBIA

- Produzione di 1/19 dell' ATP prodotta in aerobiosi per ogni mole di Glucosio
- Deplezione di ATP

Esaurimento dei potenziali transmembrana

Il metabolismo anaerobio produce

H⁺ e LATTATI

Rilevabili con EGA

ACIDOSI INTRACELLULARE

ACIDOSI SISTEMICA METABOLICA

La BEE è relativamente impermeabile agli ioni carichi che vengono trattenuti nel cervello ipossico

In corso di *ipossia cerebrale grave* la maggior parte della disfunzione e del danno è dovuta all'acidosi intracellulare

GUIDELINE FOR EMERGENCY OXYGEN USE IN ADULT PATIENTS

British Thoracic Society - Thorax 2008

I target di SpO₂ raccomandati:

- 94-98% nei pazienti non a rischio di ipercapnia;
- 88-92% nei pazienti a rischio di insufficienza respiratoria ipercapnica
- → La maggioranza dei pazienti normossici dispnoici non beneficia della somministrazione di ossigeno
- → Non c'è evidenza che l'ossigenoterapia prevenga la dispnea

La FIO₂ deve sempre essere regolata sul livello di PaO₂

Se il target non è raggiungibile aumentando la FIO₂

ricordarsi che il trasporto di O₂ è determinato anche dallo stato emodinamico

ATTENZIONE A:

stato volemico concentrazione di Hb funzionalità cardiaca

Effetti dell'iperossia: SISTEMA NERVOSO CENTRALE

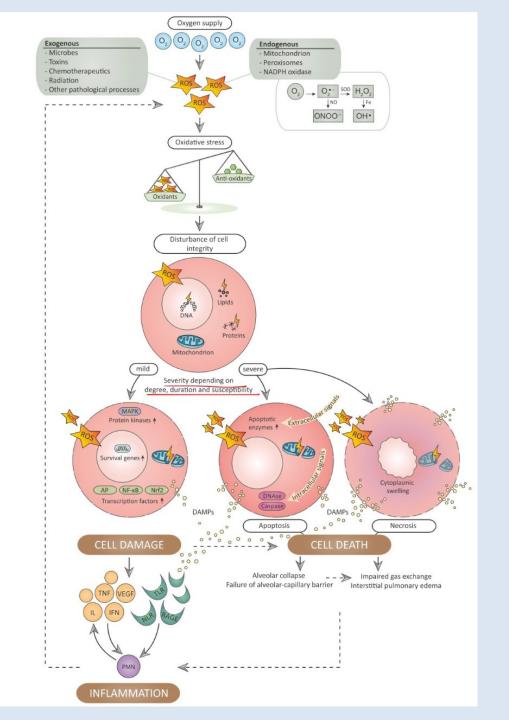
Effetto Paul Bert:

comparsa di convulsioni a una pressione atmosferica ≥ 2 ATA

(ossigenoterapia iperbarica)

Effetti dell'iperossia: TOSSICITA' POLMONARE

- Atelettasie da riassorbimento
- in zone del polmone con basso rapporto V/Q
- il fattore determinante è la FiO₂
- Inibizione della vasocostrizione polmonare ipossica
- Ipercapnia
- perdita del drive ipossico
- effetto Haldane
- Aumento del lavoro respiratorio
- maggiore densità di O₂ rispetto all'aria
- Tracheobronchite e compromissione della clearance mucociliare


HALI (hyperoxic acute lung injury)

- mediato da aumentata formazione di ROS che sovrasta le capacità antiossidanti polmonari e conseguente infiammazione
- effetti strettamente legati alla PO₂ alveolare
- <u>alterazioni patologiche</u>: danno endotelio capillari polmonari con aumento di permeabilità, edema interstiziale, infiammazione, apoptosi e necrosi pneumociti di tipo 1 con iperproliferazione pneumociti tipo 2, fibrosi interstiziale
- <u>sintomatologia</u>: senso di costrizione retrosternale, dolore toracico, tosse, necessità di fare respiri profondi, riduzione capacità vitale
- possibili sequele polmonari permanenti

Fattore di rischio indipendente per VAP

percentuale di giorni in iperossia, numero di giorni in iperossia, iperossia nelle prime 24h

Neonati: displasia broncopolmonare

Effetto LorraineSmith: tossicità
polmonare da
ossigeno,
meccanismi
patofisiologici.
[Helmerhost et al.
Bench to bedside
review: the effects of
hyperoxia during
criticall illness. Critical
Care. 2015; 19:284]

Effetti iperossia: SISTEMA CARDIOCIRCOLATORIO

- Riduzione indice cardiaco
- mediata da diminuzione di FC
- Aumento resistenze periferiche
- soprattutto cerebrali, coronariche, renali
- AVOID RCT: l'ossigenoterapia nel pz normossico con STEMI determina aumento del danno miocardico e aumento dell'area infartuata (misurata a 6 mesi con CMR)
- In corso di ACS ossigenoterapia non determina miglioramento dei parametri emodinamici, né riduzione dei sintomi
- possibili meccanismi: riduzione del flusso coronarico a causa di un aumento delle resistenze, alterazione del microcircolo con shunt arterovenoso

- Sconsigliata la somministrazione di O₂ supplementare ai pz con dolore toracico acuto in assenza di ipossiemia (linee guida NICE)
- Iperossia nei pazienti post-ROSC associata ad aumentata mortalità
- risultati ottenuti da metanalisi e studi retrospettivi, necessari RCT per chiarire questa associazione e stabilire un eventuale nesso di causalità
- date queste evidenze e non avendo l'iperossia ovvi benefici in questa popolazione di pazienti, l'ossigenoterapia andrebbe titolata accuratamente con l'obiettivo di mantenere la normossia
- Rianimazione neonatale in aria ambiente riduce la mortalità rispetto all'utilizzo di ossigeno puro
- Nessuna associazione fra iperossia e mortalità nelle prime 24h dall'ammissione in ICU dopo cardiochirurgia

IPEROSSIA E GLICEMIA

- Iperglicemia è stata rilevata in bambini portatori di difetti cardiaci congeniti frequentemente esposti a iperossia con PaO₂ tra 250 e 500 mmHg per 2-5 ore durante CPB o per diversi giorni durante ECMO
- È stato osservato che l'iperglicemia mediata dall'iperossia è dovuta a livelli significativamente elevati di glucagone
- Il meccanismo è incerto ma è possibile un'azione diretta dell'ossigeno sulle cellule pancreatiche
- Evidenze in letteratura suggeriscono che lo sviluppo di insulino-resistenza può essere riconducibile all'iperossia così come all'iperglicemia tramite la produzione di ROS

Arterial hyperoxia and mortality in critically ill patients:

a systematic review and meta-analysis

(Damiani et al, Critical Care, 2014)

- Metanalisi di studi osservazionali o interventistici riguardanti la relazione fra iperossia e mortalità in pazienti adulti di terapia intensiva
 - 17 studi analizzati
- Associazione fra iperossia e mortalità indagata su 4 subset di pazienti:
- 1. ventilazione meccanica
- 2. post-arresto cardiaco
- 3. stroke
- 4. traumatic brain injury
- Associazione fra iperossia e mortalità riscontrata in: <u>post-arresto</u> <u>cardiaco, stroke, traumatic brain injury</u>
- risultati da interpretare cautamente data l'eterogeneità degli studi e una significativa inconsistenza fra i ritrovamenti degli studi
- necessità di RCT adeguati per stabilire un nesso causale
- studio pilota before-after supporta la applicabilità e sicurezza di ossigenoterapia conservativa

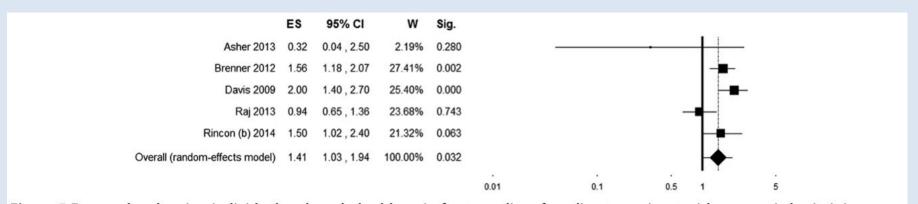


Figure 5 Forest plot showing individual and pooled odds ratio for mortality of studies on patients with traumatic brain injury. Odds ratios >1 (right side of the plot) indicate an association between hyperoxia and higher mortality. Heterogeneity was Q (4) = 11.28, P = 0.024; P = 0.024;

Forest plot che mostra gli OR dei singoli studi e l'OR cumulativo per la mortalità nei pazienti critici

con TBI [Damiani E et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014; 18(6):711]

	ES	95% CI	w	Sig.
Rincon (a) 2014	1.22	1.04 , 1.48	68.91%	0.027
Young 2012	1.26	0.97 , 1.64	31.09%	0.085
Overall (random-effects model)	1.23	1.06 , 1.43	100.00%	0.005

Figure 4 Forest plot showing individual and pooled odds ratios for mortality of studies on patients with stroke. Odds ratios >1 (right side of the plot) indicate an association between hyperoxia and higher mortality. Heterogeneity was Q (1) = 0.04, P = 0.844, $I^2 = 0$. The size of the boxes is inversely proportional to the size of the result study variance, so that more precise studies have larger boxes. ES, effect size; CI, confidence interval; W, weight; Sig., P value.

Forest plot che mostra gli OR dei singoli studi e l'OR cumulativo per la mortalità nei pazienti critici con stroke [Damiani E et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014; 18(6):711]

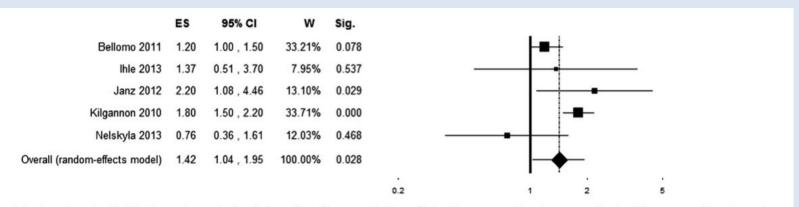


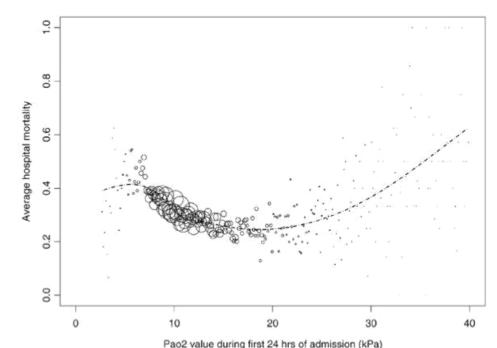
Figure 3 Forest plot showing individual and pooled odds ratios for mortality of studies on patients resuscitated from cardiac arrest. Odds ratios >1 (right side of the plot) indicate an association between hyperoxia and higher mortality. Heterogeneity was Q (4) = 12.4, P = 0.015; P = 0.

Forest plot che mostra gli OR per i singoli studi e l'OR cumulativo per la mortalità nei pazienti dopo arresto cardiaco [Damiani E et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014; 18(6):711]

	ES	95% CI	Sig.	
Eastwood 2012	0.73	0.68 , 0.78	0.000	=
Suzuki 2013	1.13	0.34 , 3.81	0.838 —	
Suzuki 2014	2.86	0.94 , 8.30	0.059	-
de Jonge 2008	1.23	1.13 , 1.34	0.000	•
				1

Figure 2 Forest plot showing individual odds ratios for mortality of studies on general populations of mechanically ventilated ICU patients (k = 4). Odds ratios >1 (right side of the plot) indicate an association between hyperoxia and higher mortality. Heterogeneity was Q (3) 91.85, P < 0.001; $I^2 = 96.73$. The size of the boxes is inversely proportional to the size of the result study variance, so that more precise studies have larger boxes. k, number of studies; ES, effect size; CI, confidence interval; Sig., P value.

Forest plot che mostra gli OR dei singoli studi per la mortalità nei pazienti critici in ventilazione meccanica. Non è stato possibile calcolare un OR cumulativo a causa della troppo elevata eterogeneità fra gli studi (Q (3)=91.85, P<0.001; I²=96.73).


[Damiani E et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014; 18(6):711]

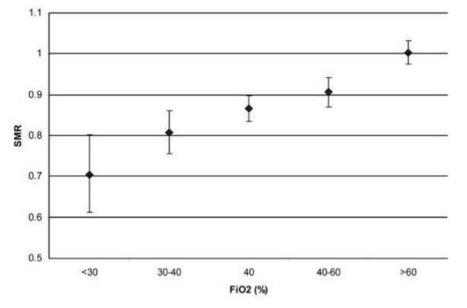
- Elevata eterogeneità fra gli studi analizzati principalmente causata dalla definizione di iperossia (cut-off e tempistica) e dalla metodica di analisi statistica
- necessità di una definizione universalmente riconosciuta di iperossia
- analizzare la PaO₂ come <u>variabile continua</u> sembra essere più efficace di utilizzare cut-off prestabiliti
- I risultati più consistenti sono stati ottenuti da studi che consideravano la <u>FIRST PaO₂</u> mentre gli studi che hanno considerato un lasso di tempo <u>>24h</u> non hanno trovato una associazione significativa
- questo potrebbe suggerire che iperossia in fase precoce sia associata a peggiori outcome

Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated ICU patients

(de Jonge et al; critical care, 2008)

- **Studio retrospettivo** di tutti i pazienti in ventilazione meccanica ammessi nella ICU di 50 ospedali universitari olandesi nel periodo 01/01/1999-30/06/2006 utilizzando il registro NICE
- Analisi sulle prime 24h di ammissione (36.307 pz):
- relazione lineare fra FiO₂ e mortalità
- relazione a U fra PaO₂ e mortalità
- Analisi sull'intera degenza in ICU (solo 5 ICU, 3.322 pz):
- relazione lineare fra FiO₂ e mortalità mantenuta
- relazione fra PaO₂ e mortalità mantenuta solo per <u>bassi valori di</u>
 <u>PaO₂</u>
- solo il 2% dei pazienti aveva PaO₂>20kPa quindi il potere statistico dello studio potrebbe essere stato troppo basso per riscontrare una associazione tra MeanPaO₂ elevata e mortalità

Relazione fra PaO2 nelle prime 24h e mortalità


Il valore di PaO2 è stato ottenuto dall'EGA con il peggior P/F nelle prime 24h di ammissione in ICU. La curva rappresenta la mortalità prevista usando l'equazione di regressione logistica nella quale il valore di PaO2 è stato ottenuto come funzione spline.

[Association between adminstered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients; de Jonge et al. Critical Care 2008; 12(6):R156]

Relazione fra mortalità e FiO2 nelle prime 24h

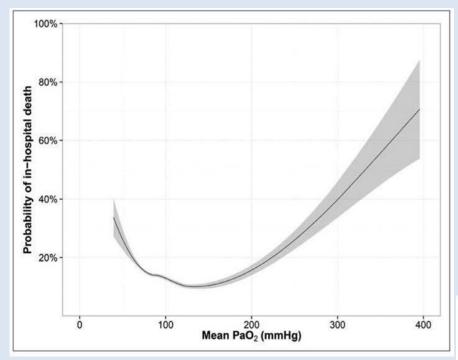
Il valore di FiO2 è stato ottenuto dall'EGA con il peggiore P/F nelle prime 24h di ammissione in ICU.

[Association between adminstered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients; de Jonge et al. Critical Care 2008; 12(6):R156]

Adjusted odds ratios for mean partial oxygen pressure (PaO₂) value and mean fraction of oxygen in inspired air (FiO₂) during ICU stay resulting from a multivariate regression analysis on data from the entire ICU stay

Covariate	Odds ratio	95% Confidence interval
Mean PaO ₂ in kPa:		
< 8.9 (n = 402)	1.63	1.16 to 2.3
8.9 to 10.6 (n = 871)	1.51	1.18 to 1.96
10.6 to 12.6 (n = 970)	1.25	0.99 to 1.57
12.6 to 16.4 (reference category) (n = 841)	1	
> 16.4 (n = 238)	1.04	0.64 to 1.68
Mean FiO ₂ (per 10%)	1.63	1.47 to 1.81

Relazione fra meanPaO2 e meanFiO2 e mortalità durante l'intera degenza in terapia intensiva.

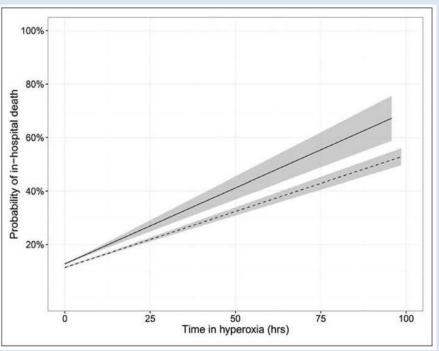

Associazione riscontrata solo per valori ipossici.

[Association between adminstered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients; de Jonge et al. Critical Care 2008; 12(6):R156]

I risultati ottenuti non sembrano essere dovuti a una maggior gravità clinica o disfunzione polmonare tuttavia:

- gli autori non escludono che gli elevati livelli di PaO₂
 possano essere stati raggiunti utilizzando <u>tecniche</u>
 ventilatorie più invasive e quindi più dannose per i
 pazienti
- gli autori non conoscevano il <u>valore di PEEP</u> (non presente nel registro NICE) che influenza il P/F
- il medico potrebbe aver riconosciuto qualche <u>marker di</u> <u>gravità clinica</u> non riconosciuto dagli autori (per il quale quindi non è stata aggiustata l'analisi statistica) e quindi potrebbe aver somministrato di proposito una più elevata FiO₂ in questi pazienti ad alto rischio

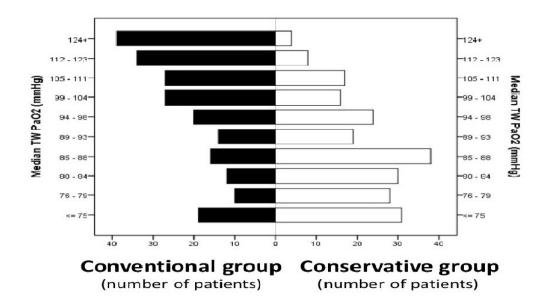
- I valori di PaO₂ riscontrati nei pazienti analizzati erano più alti di quelli normalmente raccomandati in letteratura
- Sebbene la tossicità da O₂ sia ben conosciuta, valori di FiO₂ fino a 0.5 vengono comunemente considerati sicuri
- Appare dunque chiaro come i medici siano più focalizzati ad evitare l'ipossia senza tenere conto dei rischi connessi all'iperossia

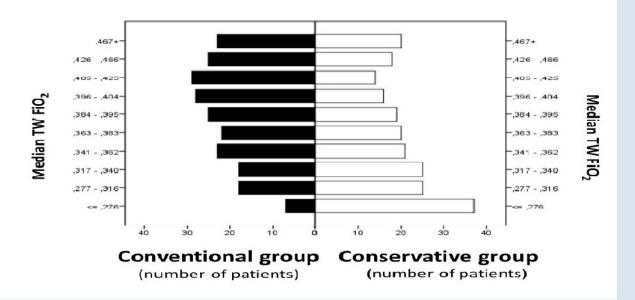


Probabilità di mortalità rispetto al tempo passa in iperossia: relazione lineare. Linea tratteggiata: iperossia lieve. Linea continua: iperossia severa.

[Helmerhost et al. Metrics of arterial hyperoxia and associated outcomes in critical care. Critical Care Med. 2017; 45(2):187-195]

Probabilità di mortalità rispetto AVG: relazione a U


[Helmerhost et al. Metrics of arterial hyperoxia and associated outcomes in critical care. Critical Care Med. 2017; 45(2):187-195]



Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit

(Girardis et al. JAMA, 2016)

- RCT open-label condotto nella TIPO dell'Azienda Ospedaliera Universitaria Policlinico di Modena
- gruppo controllo (218 pz): ossigenoterapia liberale
- gruppo sperimentale (216 pz): ossigenoterapia conservativa
- Esposizione a O₂ valutata tramite distribuzione in quartili della mediana del daily time-weighted PaO₂
- daily time-weighted PaO₂ e FiO₂ più elevate nel gruppo di controllo (P<0.001)
- potrebbe essere una approssimazione della vera esposizione a iperossia nei pz per i quali erano disponibili solo 1-2 EGA al giorno

Distribuzione in decili della mediana della daily timeweighted PaO2 e FiO2.

[M Girardis et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit. The Oxygen-ICU Randomized Clinical Trial. JAMA, 2016]

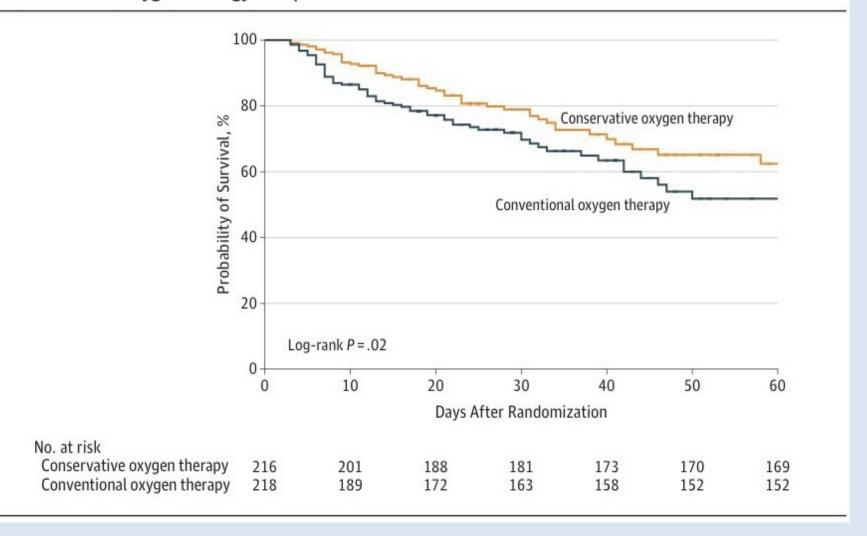
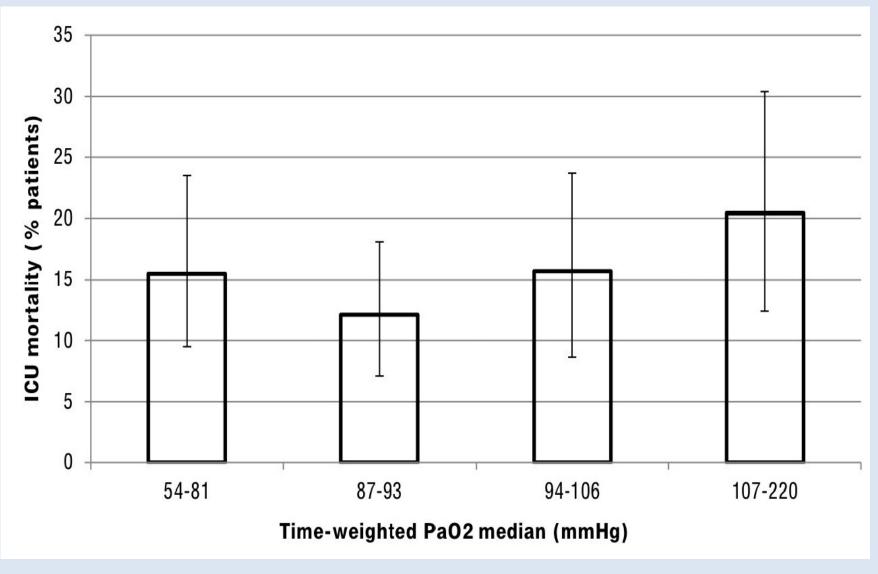

- Risultati: nel gruppo conservativo
- riduzione mortalità in ICU
- in-hospital mortality minore
- minori episodi di shock, insufficienza epatica, batteriemia e maggior numero di ore libere da ventilatore
- Conferma della relazione a U precedentemente riportata fra time-weighted PaO₂ e mortalità
- È il primo RCT a valutare gli effetti di ossigenoterapia conservativa sulla mortalità rispetto ad un approccio standard in una popolazione di pz critici adulti

Table 2. Primary and Secondary Outcomes


	Oxygen Therapy	, No. (%)		P Value
	Conservative (n = 216)	Conventional (n = 218)	Absolute Risk Difference (95% CI)	
Primary outcome				
ICU mortality	25 (11.6)	44 (20.2)	0.086 (0.017 to 0.150)	.01
Secondary outcomes				
Hospital mortality	52 (24.2)	74 (33.9)	0.099 (0.013 to 0.182)	.03
New organ failure during ICU stay	41 (19.0)	56 (25.7)	0.067 ()-0.012 to 0.145)	.09
Respiratory failure	14 (6.5)	14 (6.4)	-0.126 (-0.189 to -0.064)	.98
Shock	8 (3.7)	23 (10.6)	0.068 (0.020 to 0.120)	.006
Liver failure	4 (1.9)	14 (6.4)	0.046 (0.008 to 0.088)	.02
Renal failure	26 (12.0)	21 (9.6)	-0.024 (-0.084 to 0.035)	.42
New infections during ICU stay	39 (18.1)	50 (22.9)	0.049 (-0.027 to 0.124)	.21
Respiratory	30 (13.9)	37 (17.0)	0.031 (-0.038 to 0.099)	.37
Bacteremia	11 (5.1)	22 (10.1)	0.050 (0.000 to 0.090)	.049
Surgical site ^a	10 (7.2)	12 (9.1)	0.019 (-0.048 to 0.088)	.68
Surgical revision ^a	18 (12.9)	16 (12.1)	-0.008 (-0.088 to 0.073)	.84
Mechanical ventilation-free hours, median (IQR)	72 (35 to 110)	48 (24 to 96)	24 (to 46)	.02
ICU length of stay, median (IQR), d	6 (4 to 10)	6 (4 to 11)	0 (0 to 2)	.33
Hospital length of stay, median (IQR), d	21 (13 to 38)	21 (12 to 34)	0 (-5 to 1)	.21

[M Girardis et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit. The Oxygen-ICU Randomized Clinical Trial. JAMA, 2016]

Figure 2. Probability of Survival From Study Inclusion (Day 0) Through Day 60 for Patients in the Conservative and Conventional Oxygen Strategy Groups

[M Girardis et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit. The Oxygen-ICU Randomized Clinical Trial. JAMA, 2016]

Mortalità in terapia intensiva a seconda della distribuzione in quartili della mediana della daily timeweighted PaO2.

[M Girardis et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit. The Oxygen-ICU Randomized Clinical Trial. JAMA, 2016]

- La dimensione del campione non permette una analisi dettagliata su diversi subset di pz
- Nonostante la randomizzazione i pz nel gruppo di controllo tendevano verso una più elevata gravità clinica al baseline: questo sbilanciamento potrebbe essere responsabile, almeno in parte, della più alta mortalità in questo gruppo
- Incidenza di nuove infezioni potrebbe essere stata sottostimata perché sono state considerate solo quelle con conferma microbiologica
- Trial interrotto prematuramente per basso tasso di inclusione a causa del terremoto che ha colpito Modena nel maggio 2012, questa precoce interruzione non pianificata potrebbe aver esagerato l'effect size
- Necessità di conferma da parte di un RCT più grande

CONCLUSIONI

- L'ossigeno è un farmaco universalmente utilizzato nel trattamento del paziente critico, generalmente considerato sicuro e privo di rischi
- Le recenti evidenze suggeriscono un possibile effetto negativo di concentrazioni soprafisiologiche di ossigeno
- Sono necessari ulteriori studi per chiarire gli effetti che l'iperossia ha su diversi sottogruppi di pazienti critici
- Al fine di standardizzare l'ossigenoterapia è prioritaria la definizione di target comuni di ossigenazione
- In base alle evidenze attuali sembrerebbe razionale mantenere uno stato di normossia evitando sia l'ipossia che l'iperossia

References (1)

- 1. Andrew B. Lumb. Nunn fisiologia della respirazione applicata alla pratica clinica settima edizione, 2012. Elsevier;
- 2. AD Bersten, N Soni. Oh's intensive care manual, 7° edition, 2014. Elsevier.
- 3. Collins J-A, Rudenski A, Gibson J, et al. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve. Breathe 2015; 11: 194-201;
- 4. The ARDS Definition Task Force. Acute Respiratory Distress Syndrome- The Berlin Definition. JAMA- June 20, 2012;
- 5. Guideline for emergency oxygen use in adult patients. British Thoracic Society Thorax 2008;
- 6. JM Harten et al. The effect of normobaric hyperoxia on cardiac index in healthy awake volunteers. 2003 Anaesthesia;
- 7. S Six et al. Hyperoxemia as a risk factor for ventilator-associated pneumonia. 2016; Critical Care. 20:195
- 8. Helmerhost et al. Bench to bedside review: the effects of hyperoxia during criticall illness. Critical Care. 2015; 19:284
- 9. D Stub et al. Air versus oxygen in ST-segment-Elevation Myocardial Infarction. Circulation. 2015; 131:2143-2150;

References (2)

- 10. ADJ Sutton et al. The association between early arterial oxygenation and mortality post cardiac surgery. Anaesthesia Intensive Care. 2014; 730-735;
- 11. Chih-Hung Wang et al. The effect of hyperoxia on survival following adult cardiac arrest: A systematic review and meta-analysis of observational studies. Resuscitation, 2014; 1142–1148;
- 12. S karim et al. Does hyperoxia affect glucose regulation and transport in the newborn? J Thorac Cardiovasc Surg 2003;126:1730-5;
- 13. A. Burls et al. Oxygen use in acute myocardial infartion: an online survey of health professionals? Practice and beliefsEmergency medicine Journal. 2010; (4):283-6;
- 14. AE de Graaf et al. Clinicians' response to hyperoxia in ventilated patients in a Dutch ICU depends on the level of FiO2. Intensive Care Medicine.2011; 37(1):46-51
- 15. De Jonge et al. Association between adminstered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients; Critical Care 2008; 12(6):R156;
- 16. Helmerhost et al. Metrics of arterial hyperoxia and associated outcomes in critical care. Critical Care Med. 2017; 45(2):187-195
- 17. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit Girardis et al. JAMA, 2016